Physicochemical characteristics of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) electrospun nanofibres for the adsorption of phenol
نویسندگان
چکیده
منابع مشابه
Cloning and analysis of the poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) biosynthesis genes of Aeromonas caviae.
A 5.0-kbp EcoRV-EcoRI restriction fragment was cloned and analyzed from genomic DNA of Aeromonas caviae, a bacterium producing a copolyester of (R)-3-hydroxybutyrate (3HB) and (R)-3-hydroxyhexanoate (3HHx) [P(3HB-co-3HHx)] from alkanoic acids or oils. The nucleotide sequence of this region showed a 1,782-bp poly (3-hydroxyalkanoate) (PHA) synthase gene (phaC(Ac) [i.e., the phaC gene from A. cav...
متن کاملBiosynthesis and properties of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) polymers.
In support of programs to identify polyhydroxyalkanoates with improved materials properties, we report on our efforts to characterize the mechanical and thermal properties of copolyesters of 3-hydroxybutyrate (3HB) and 3-hydroxyhexanoate (3HHx). The copolyesters, having molar fraction of 3HHx ranging from 2.5 to 35 mol % and average molecular weights ranging from 1.15 x 10(5) to 6.65 x 10(5), w...
متن کاملSiliceous mesostructured cellular foams/poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) composite biomaterials for bone regeneration
Osteoinductive and biodegradable composite biomaterials for bone regeneration were prepared by combining poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) with siliceous mesostructured cellular foams (SMC), using the porogen leaching method. Surface hydrophilicity, morphology, and recombinant human bone morphogenetic protein 2 adsorption/release behavior of the SMC/PHBHHx scaffolds were an...
متن کاملFabrication of Porous Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) Monoliths via Thermally Induced Phase Separation
This study deals with the fabrication of biodegradable porous materials from bacterial polyester, poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (P3HB3HHx), via thermally induced phase separation. P3HB3HHx monoliths with topological porous structure were prepared by dissolution of P3HB3HHx in dimethyl sulfoxide (DMSO) at 85 ̋C and subsequent quenching. The microstructure of the resulting P3HB3HH...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Experimental Nanoscience
سال: 2020
ISSN: 1745-8080,1745-8099
DOI: 10.1080/17458080.2020.1714599